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Abstract

This paper details an introduction into the topic of quantum machine learning. Given that
to many audiences this is a very advanced subject, I will not presuppose any knowledge
of machine learning or quantum topics. Thus, included is a brief introduction to quantum
machine learning on a broad scope, followed by an explanation of the necessary topics to
understand in baseline machine learning and baseline quantum computing. Finally we will
then explore quantum machine learning, including its limitations, power, and potential
future applications.
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1. Quantum Machine Learning Overview

Quantum Machine Learning - although this phrase may sound intimidating or confusing at
first, through learning about the following foundational concepts I hope you will come to
understand that it is in fact relatively straightforward, with extremely interesting potential
at the crossroads of two exciting fields within the computing space.

1.1 What is Quantum Machine Learning?

In short, quantum machine learning refers to the application of quantum computing tech-
nology to the field of machine learning. If this explanation is only leaving you more confused
- the following few sections of this paper should provide you with enough information on
the two major building blocks of quantum machine learning (classical machine learning,
and quantum computing) to explore in more detail quantum machine learning itself.

1.2 Why Quantum Machine Learning?

Machine learning, a field that is generally only considered in the realm of classical comput-
ing, has a few characteristics as a subject that make it an ideal candidate to be optimized
by quantum systems. One big limitation with machine learning in the modern era is the
sheer size of problems we want to solve. Many companies in the past decade have pivoted
their main profit generating business component to be data itself, and the amount of data
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being collected in every facet of life is staggering.

This is where quantum computing comes in - with this surplus of data, there is massive
potential for machine learning to identify meaningful and actionable trends. With some
large scale simulations and model training, required computational power is simply not
feasible with classical computing. Being able to leverage clever quantum solutions to break
down computational complexity could be an extremely lucrative way to work on problems
not even conceivable without quantum innovation.

Aside from this potential solution to some scaling complexity issues with classical sys-
tems, quantum systems are potentially even able to achieve higher prediction accuracy and
generalization power when provided the same problem as a classical system.

2. Machine Learning

At this point no matter what your background is in education or professional life, machine
learning is a term that you have likely heard in conversation. Additionally, machine learning
is a very common buzzword thrown around in the tech world today - however many people
have a strong misconception of what this term actually refers to.

Contrary to what some people believe, machine learning as a concept is not what is
going to bring us “Skynet” from the Terminator series - and in fact in most cases the term
machine learning is just a fancy layer of abstraction on top of simple statistics. That being
said, there are a number of foundational machine learning concepts that will be important
for you to understand when considering quantum machine learning at a theoretical level.
Let’s now take a look at some inner workings of classical machine learning.

2.1 Machine Learning Objectives

At the most basic and high level, the goal of machine learning is to extract patterns and
meaning from data in order to make predictions about any future, unseen data that you
may encounter. Machine learning and the underlying math has been around for a very long
time, thus the recent surge of interest in machine learning has been sparked by a few key
points. First, we now live in an era where data is everywhere, and where there is data there
are patterns to find within this data to generate business advantages, thus there is machine
learning to find these patterns. Second, until recently the computational power required
to train some machine learning models on large scale datasets has just not been feasible -
but we are no longer faced with this problem especially with the broad acceptance of cloud
computing as a commonplace tool.

Now you may be asking yourself, what are some of the common types of questions you
might want to answer with machine learning? And that itself is a hard question to fully
answer considering the obscurities with different model types that exist within machine
learning, but the following are a few.

2.2 Machine Learning Paradigms
2.2.1 SUPERVISED LEARNING

Linear Regression - Given data of houses in a neighborhood (number of bedrooms, number
of bathrooms, square footage, year of construction, location, etc) - what should I price my
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house at when listing it on the market? This type of question is referred to as linear re-
gression, because given any number of features we are attempting to predict a continuous
value. (in this case a dollar value in a range).

Logistic Regression - Given healthcare data of elderly patients (age, gender, height, weight,
prior conditions, relatives, etc). Predict whether or not a patient will be at risk of con-
tracting a particular disease. This type of problem is very common in many industries -
where the general format is taking any number of input features, and attempting to predict
a boolean result.

Supervised learning, illustrated by the examples above in linear/logistic regression -
refers to a machine learning problem where within your input data, you are given the “solu-
tion” or target value of what a specific data entry should output: for example: (2 bedroom,
3 bathroom, 1500sqft, 2003, TARGET = 500,000 USD). So generally the goal with super-
vised learning is to follow the very human-intuitive notion of learning by example. Put
into simple English, if you see what price a specific house and model should have, within a
supervised learning problem you remember that price for the future when you see similar
houses.

2.2.2 UNSUPERVISED LEARNING

K-means Clustering - Suppose you're working with a database of plants. Each plant with
features such as (petal width, petal length, sepal width, etc), but none of the plants have
labels or ‘target’ variables that describe what the type of plant is. It is intuitive to think
that despite this there will be underlying groupings within the data of plants that are the
same species. Each of these entries corresponding to the same species will likely have similar
values for each of the above attributes. These types of problems are the motivation for the
k-means clustering algorithm, which is used to generate groupings among an unlabeled data
set.
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Unsupervised learning is just the opposite of supervised, generally in supervised learning
you are learning from example by observing a data entry’s label or target variable and
associating each of its other features with that label. Unsupervised learning on the other
hand does not have this ability to associate information with labels, so the alternative is to
associate information with semi-arbitrary groupings selected by the model.

Now there are even more specific types of models than this, for example k-nearest
neighbors which is a very popular tool doesn’t even use a parametric definition of the
underlying model. For now this will be enough to begin to understand the basics of quantum
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machine learning which we will get into later on.
Next, it is important to learn about the machine learning “pipeline” or in other words,
how we can go from data and a question, to a tangible solution and prediction engine.

2.3 Machine Learning Data Pipeline

In implementation there are many different choices you can make for a particular machine
learning solution, but the general process will look like the following regardless of model
selection or learning paradigm.
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2.3.1 SOURCING DATA

Given that machine learning entirely revolves around data, it makes sense that the first step
in implementing a machine learning solution would be to obtain our data. This step can
either be extremely easy or extremely difficult based on the problem and scale of operation.
In some cases this step will be a simple query to a database with a programming language
such as SQL, alternatively this step could entail web scraping (The Beautifulsoup Python
library is a good example of this), various hacking techniques, or pulling information from
APIs. Putting this into the frame of machine learning in industry: large companies that
have the resources to do so will often hire people specifically for this role under the title of
data engineer.

2.3.2 DATA PREP

Often whenever data is received it is in a format that is not acceptable to plug directly
into a machine learning model. For example: many models cannot handle string data,
missing data, or certain ranges of values. Thus, this step generally includes either dropping
data entries with missing fields, removing outliers, and standardizing values (in many cases
a value between 0-1 is preferable over a value in an arbitrarily large continuous range).
This step in the pipeline can be quite difficult depending on where the data is pulled
from, generally values from an internal company database can be reliable, but especially
when sourcing data from the internet or unknown sources it is extremely important to be
thorough with cleaning and preparing data. This step is also generally when Exploratory
Data Analysis (EDA) will be performed in order to identify potential trends within data and
generate questions - which we then solve in the next steps with machine learning solutions.
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2.3.3 TRAINING

Now for the core of the machine learning process, the training of a model. This step can
vary dramatically based on the underlying model selection as you can likely imagine, but
the basic process is generally always the same. Assuming we have a cleaned and prepped
data set, the next step is to split this data into two partitions - about 80 percent of the data
will be declared the ‘training set’ and 20 percent of the data will be declared the ‘test set’.
Following this, we scan through every entry in our training set and in many cases the actual
computational process performed for each entry is tweaking weights or scalars held by an
underlying object. Sparing details here as for each model this process is vastly different - if
any particular model discussed in this paper piques your interest I would highly recommend
further research on that particular model’s training process as I personally find this step to
be extremely interesting.

Additionally at the end of the training cycle, it is common to take our trained model and
practice making predictions with the remaining 20 percent of the data originally partitioned
as our ‘test’ set, in order to determine how effective and accurate our predictions are. If we
are not satisfied with our results we can tweak parameters or perhaps switch to a different
model. Once we have achieved satisfactory results, the next step in the machine learning
cycle is to deploy our solution to make real world predictions.

2.3.4 MODEL DEPLOYMENT

Now that we have a model the real value from machine learning can be leveraged, namely
making predictions on unseen data. The step of deployment will again depend on context.
This could take the form of a prediction engine deployed in a script on a website, or an
internal company tool. An example of a very simple deployed model can be found at the
following link. https://theodoredyer.github.io/braings/brain.html. In the linked example the
model learns dynamically, with each user input it adjusts internal neural network weights.

2.4 Processing Paradigms

Now that you have a basic understanding of the types of problems we can solve with machine
learning and the process we must follow to begin to solve these problems, let’s now look
at where exactly machine learning shines and what its underlying computational patterns
look like.

Any problem able to be solved by a computer involves two things - data, and an instruc-
tion or set of instructions. Given that there are two components here, there are 4 resultant
paradigms of problem types - machine learning leverages the power of SIMD processing
explained below.

2.4.1 SISD (SINGLE INSTRUCTION SINGLE DATA)

This pattern includes most basic computer programs, or more specifically computer pro-
grams that do not employ multi-threading or parallel processing. Most simple programs
follow a linear instruction stream executing line by line in a standard fashion on a clearly
defined discrete data stream.
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2.4.2 SIMD (SINGLE INSTRUCTION MULTIPLE DATA)

These types of problems involve applying a single instruction to a large pool of data. A very
common example of this exists in graphics processing: if in a virtual environment a light
source is added, every single pixel in that environment must be modified by the light in
some way. Thus the same instruction (modifying light values of pixels) must be performed
on an extremely vast array of data points or pixels. This type of problem prompted the
need for GPUs, which specialize in exactly this domain (SIMD), and this paradigm is where
machine learning also resides. In training a machine learning model, we have this exact same
scenario. We know what operation we need to perform on a point of data, and we need
to employ this operation to an entire data set. For those wondering, this is why machine
learning leverages GPUs effectively.

2.4.3 MISD (MULTIPLE INSTRUCTION SINGLE DATA)

This paradigm applies to problems that include what many people may know as parallel
processing or multithreading. In some cases there may exist some shared resource or data
stream (for example a server) that many different entities need to interact with at the same
time, each with their own stream of instructions or queries.

2.4.4 MIMD (MULTIPLE INSTRUCTION MULTIPLE DATA)

These systems are those with multiple processors allowing for parallel processing, but not
limited to just one information stream, examples of this can be harder to find in common
applications, so for now this is all that is necessary to understand.

So with all of these paradigms in mind, we are able to understand where machine
learning finds its niche of computational power, namely in the SIMD space. Because there
have been such vast advancements in GPU technology, the efficiency and practicality of
machine learning has also risen as a result. Looking forward this is exactly where my main
concern with quantum machine learning lies, essentially what has allowed machine learning
to rise to prevalence is the existence of compute resources and with comparable quantum
systems not even scratching the surface of physical qubit availability it may be quite some
time until quantum machine learning sees use.

2.5 Machine Learning’s Limitations

Everything discussed so far has highlighted the positive aspects of machine learning, we’re
now able to solve problems previously thought to be impossible and creative new uses of the
technology are cropping up every single day. However, machine learning is not without its
drawbacks, and the vast majority of these additionally apply to quantum machine learning.

2.5.1 PROBLEM SETUP

There are many cases in which people simply try to force machine learning solutions into
domains that do not call for it. Even when machine learning can be applied, it is com-
monplace for people to assume the most complicated machine learning models are the best
regardless of problem type. This poses a problem as for example oftentimes linear regres-
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sion can be much better suited to a problem that some decide to solve with a much more
complicated model.

Additionally, there are simply some real world phenomena that cannot be modeled by
data despite how hard we try, “A neural network does not understand Newton’s second
law, or that density cannot be negative — there are no physical constraints.” (The Limita-
tions of Machine Learning, Stewart). One key component of a successful machine learning
solution is a human being with expert subject knowledge working alongside developers to
ensure certain parameters and restrictions are set in place. For example: one might end
up in a situation where a model predicts a value that simply does not have a real world
counterpart (negative areas, negative distances, etc).

At the end of the day machine learning solutions are only as good as their setup, and
properly outlining the problem domain and carefully monitoring model weights and predic-
tions can be just as important as defining the correct problem in the first place.

2.5.2 INTERPRETATION

Machine learning in general is a concept that exists at the edge of many other subjects -
namely to understand and be able to apply machine learning you must first understand
statistics, mathematics, and computer science to a fairly high extent. Additionally, because
machine learning as a concept has been around for such a long time, there has been a large
amount of innovation and advancement made in the theory behind some different types of
machine learning models.

These two facts lead us to an un-ignorable flaw with machine learning when it comes
to finding practical business applications. Sometimes specific machine learning solutions
can simply be too complicated to explain to people who do not have similar backgrounds
to the developers. For example, why would a business higher-up without a heavy tech
background decide to invest money and resources into a problem solution that they don’t
even understand? How can you pitch implementing a feedforward neural network utilizing
backpropagation to a client who has not taken a math course in the last 30 years? The
answer is that sometimes the right solution is just to not utilize advanced machine learning
in the place of something that is more easily explainable to a client. This is said with the
caveat that in general many people in the tech world are gaining general familiarity with
machine learning.

2.5.3 COMPUTE POWER

We just got done exploring how machine learning has been able to leverage compute power
to find more practical applications today, so why am I now listing this as a flaw? Moving
forward, the production of data will certainly now slow down, “Consider that 90 percent of
the world’s data has been produced in just the last two years. This explosion of information
is known as “Big Data,” and it is completely transforming the world around us,” (Big Data
and What it Means, Bradshaw).

This rapid increase in data production, if it follows a similar trend, will far outpace the
trend described in Moore’s law in terms of compute power. Inevitably we will reach a point
where we are faced with problems that again are not feasible to be solved with classical
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machine learning, requiring a more sophisticated solution which will hopefully be found in
quantum machine learning.

3. Quantum Computing

You may be wondering, after all of the prior mentions of classical computing and classical
machine learning, why distinguish classical? What exactly is the alternative I have been
distinguishing from? The alternative is quantum computing and quantum machine learning.
Given quantum computing itself is a very complicated field to begin to understand, I will
spare many details in this description and keep it to a minimum needed to understand the
following quantum machine learning concepts.

3.1 Qubits vs. Bits

Classical computers utilize at their lowest level what is referred to as ‘bits’, an entity that is
able to exist in one of two states, either 0 or 1, and is physically represented by an electrical
signal of high or low. With current developments in classical computer hardware we are
able to store trillions of bits in memory systems. Additionally, the computational power
of classical computers has generally followed what is referred to as Moore’s law - stating
that the number of transistors on an integrated circuit doubles about every two years (since
1965). Although this is slowing down in modern days, this is to say that we have reached
vast improvements in computational power, and there now exist very few problems that
can be solved with brute force by adding more bits at a problem. New advancements in
being able to solve problems will likely only be made with different systems, ie: quantum
systems.

Quantum systems do not use bits represented by simple electrical signals on wires at
all, and in their place they instead utilize ‘qubits’. At the core of the system, qubits serve
the same purpose as bits in classical systems as they are the baseline entity able to store
pieces of information. The key difference between a bit and a qubit is that a qubit is able
to exist in a ‘superposition’ of 0/1 and is essentially able to represent both 0 and 1 at the
same time.

3.2 Quantum Scaling

One of the main draws to implementations of quantum computing, and the motivation
for further development of quantum machines is the potential for quantum systems’ com-
putational power scaling. There exist already today some problems that are simply not
feasible to compute using classical machines, problems for which computational complexity
is increased by some exponential or other factor. For example, “It would take a classical
computer around 300 trillion years to break a RSA-2048 bit encryption key. That’s why we
all feel that we are “safe” from these attacks. But it does illustrate that the foundation of
all of our cryptography is not guaranteed to be secure, it is only known to be really, really
hard to solve,” (Breaking RSA Encryption, Baumhof). The reason that this problem is so
difficult to solve with a classical computer is due to the fact that it requires exponential
computational complexity, specifically in the realm of (2 raised to the power of 2048) oper-
ations.
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Where quantum computing can be extremely powerful is in situations exactly like this.
With utilization of Shor’s algorithm, this problem of cracking RSA encryption can be bro-
ken down into a polynomial computational complexity problem. This means that not only
is this problem feasible to be solved in our lifetime, but once sufficient quantum machines
have been built - able to be solved almost instantly.

One might imagine that in the problem domain of machine learning, which will continue
to grow in requiring more computational power as simulations and model training begin to
consume more data, the ability to reduce complexity of training could become extremely
desirable if a quantum solution were able to be found.

3.3 Physical Quantum Computers

Because at the core of quantum computing is the qubit instead of a classical bit, one might
imagine that physical quantum systems must be quite different from classical computers
and that is indeed correct. Physically representing a bit is quite simple given that it can
only exist in one of two states - a simple electrical signal will suffice, this is certainly not
the case with qubits.

It turns out that qubits in practice can be implemented many different ways, such as
trapped ions, neutral atoms, or superconducting qubits (those used by IBM which is cur-
rently the leader in developing quantum systems). The fact that quantum systems require
a completely different foundation in physical implementation leads to one problem being
that we cannot re-use any technology previously built for classical machines to accelerate
the development of quantum machines. Thus for the foreseeable future there will be a race
between parties to build bigger and better quantum machines.

3.4 Quantum Limitations

Now as previously stated quantum machines in their physical implementation are still very
much in the early stages of development. This means that even though for example we
know that RSA-2048 bit encryption can be cracked with a quantum computer quite easily,
and the process for doing so has already been figured out, we simply do not have a quantum
computer large enough for this to be possible yet.

Another complication with the physical implementation of quantum machines are the
conditions in which they must operate. Qubits can be quite finicky, even measuring the
state of a qubit disturbs the state of a qubit, so how can we possibly maintain the state of
a physical implementation of one? Of course there are many ways this problem could be
approached, but in practice so far it has been addressed by keeping them in extremely cold
environments. Even with precautions in place, quantum computers have high error rates
generally requiring the use of a partition of qubits to monitor errors. For these reasons I
personally find it extremely unlikely that anyone in our lifetime will experience the avail-
ability of a personal quantum computer.

Additionally, the ability to break an exponential complexity scaling problem into one
of polynomial complexity is quite an impressive feat, however, it is not going to apply
to all problems. Given that the application of quantum algorithms is still a heavily re-
searched subject it is simply to impossible to model certain problems in a context for which
a quantum computer will be able to achieve super-polynomial speedup. For some exam-
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ples check out the following link to get a sense for which this speedup is indeed possible:
https://quantumalgorithmzoo.org/

4. Quantum Machine Learning

Farlier I stated that quantum machine learning is the application of quantum computing
to the field of machine learning. Hopefully now this is beginning to make more sense and
the pairing of these two subjects together seems intuitive.

4.1 Motivation for Quantum Machine Learning

As we now know, machine learning is a subject with very high potential when applied to
the right data set and to the right type of problem, as is quantum computing. There are
two main areas where quantum applications have the potential to improve machine learning
solutions.

First, looking at the sheer scale of some classical machine learning problems, for example
Google’s “... baseline model for JFT was a deep convolutional neural network that had been
trained for about six months using asynchronous stochastic gradient descent on a large
number of cores. This training used two types of parallelism,” (Distilling the Knowledge in
a Neural Network, Hinton, Vinyals, Dean). Six months is an extremely long time to spend
training a model before it even sees practical use, although with the prior stipulations about
quantum computing not always being able to provide speedup, the potential it could have
when paired with specific types of models could be extremely valuable, considering problems
of this scale to indeed exist.

Second, when framing a problem in terms of a quantum solution, many preconceived
notions about how problems should behave go out the window. Quantum systems allow us
to interpret generalizations and patterns within a data set which are simply not possible to
detect by classical systems. This potentially leads us to be able to make better predictions
across the board and achieve higher prediction accuracy.

4.2 Quantum Advantage

Summarizing the above: the base goal of implementing quantum machine learning is to
answer the question of whether or not we can achieve quantum advantage by doing so.
Simply put, “The idea of quantum advantage is typically phrased in terms of computational
advantages. That is, given some task with well defined inputs and outputs, can a quantum
computer achieve a more accurate result than a classical machine in a comparable runtime?”
(Quantum Machine Learning and the Power of Data, McClean, Huang). I would expand
on this to say that quantum advantage also includes the ability of a quantum computer to
achieve similar accuracy to a classical system while at the same time utilizing much less
run-time.

4.3 Quantum Machine Learning Models

As there are many different ways to represent even a single qubit in the context of quantum
computing, you will not be surprised to find out that there are many ways to represent
and utilize a quantum machine learning model. The following discussion will be based on

10
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the structure of a model introduced by Google’s TensorFlow Quantum (A public quantum
machine learning library), which is at the forefront of quantum machine learning research
and development.

At the most basic level, a quantum machine learning model is a machine learning model
that is able to represent data and generalize information from data using quantum mechanics
as its basis. One approach to this is to utilize quantum data in combination with hybrid
quantum-classical models.

4.3.1 QuANTUM DATA

Quantum data is simply data which possesses the quantum qualities of superposition and
entanglement, such data can be created, or simulated on a quantum processor. Quantum
data can tend to be quite noisy given the properties it is associated with, but that is not
necessarily a bad thing, as it is said, “applying quantum machine learning to noisy entan-
gled quantum data can maximize extraction of useful classical information” (Announcing
TensorFlow Quantum, Ho, Mohseni).

4.3.2 HYBRID QUANTUM-CLASSICAL MODELS

Because of limitations with modern quantum processors being quite limited, much of what
has been done in regards to present day quantum machine learning research has been done
utilizing whatever quantum processing resources are available in tandem with classical pro-
cessors. Specifically in regards to TensorFlow Quantum’s platform - machine learning in
general is already a concept in which parallelism is extremely lucrative for training and uti-
lizing models (especially across different types of processors - namely GPUs and CPUs for
machine learning), thus they already have framework in place to implement such quantum-
classical parallelism.

With these concepts in mind we can continue with how TensorFlow Quantum is able to
represent larger quantum machine learning models, and what their pipeline looks like.
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A high-level abstract overview of the computational steps involved in the end-to-end pipeline

for inference and training of a hybrid quantum-classical discriminative model for quantum data
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4.4 TensorFlow Quantum Neural Network Example

The following steps refer to the above figure.

4.4.1 DaTA PREP

Data prep for a quantum neural network is different that what you are likely thinking of
for traditional machine learning, although it does serve essentially the same purpose. In
this step, quantum data is initialized as a group of tensors, which can be thought of as
n-dimensional arrays of numbers, with each data tensor represented by a quantum circuit
written in Cirq (quantum programming language). Tensors are then executed by Tensor-
Flow to generate a quantum dataset.

4.4.2 EVALUATING THE QUANTUM NETWORK MODEL

This step echoes closely what is done in a classical system in terms of assembling a structure
to extract information from classical data, however, in the quantum context these models
are dealing with quantum data which may be entangled, and must extract information from
qubits into a classical representation for the rest of the pipeline.

4.4.3 SAMPLING

Taking a measurement on a qubit or piece of quantum data will result in classical informa-
tion, which follows the process of taking a sample from a random variable in the context of
classical mathematics.

4.4.4 CLASSICAL POST-PROCESSING

The remainder of the pipeline follows the traditional/classic, neural network format of data
processing, avoiding specifics for now.

4.5 When to use Quantum Machine Learning

As previously stated, a limitation of both machine learning and quantum computing is that
the problem domain needs to be just right for both of these fields to coincide and both
provide value. A way we can determine if both of these criteria have been met, developed
by Google quantum machine learning researchers, is to utilize quantum feature mapping
/ kernel methods to translate data sets into classical and quantum counterparts. Before
we can delve into the specifics of this process let’s first explore the foundational concepts
addressed therein.

4.5.1 FEATURE MAPPING

Features of a data set or data entry simply refer to the ‘columns’ or attributes of that data
point that are not what we are trying to predict: for example when looking at housing data,
the features might include (number of bedrooms, number of bathrooms, square footage,
etc) and the target feature would then be price. Tieng this back to the concept of feature
mapping, the objective of which is to take features of data entries and translate them into
a format that is able to be represented on a graph, or visually in general.

12
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4.5.2 KERNEL FUNCTIONS

Kernel functions at their core are simply a way to take and transform data into intermediate
values that better suit a given problem. For example: if an input existed in the form of a
non-linear pattern, we can translate this data into a linear form based on some set of rules
defined in a kernel function. The uses of these can vary quite widely, but the main benefit
is to be able to translate data into arbitrary bases or representations to meet requirements
or intermediate needs.

4.5.3 TESTING FOR QUANTUM ADVANTAGE

With all of this in mind, we can boil down the question of “when should we use quantum
machine learning” to the analysis of when quantum advantage is present. We’re now going
to analyze a method created by the aforementioned Google quantum machine learning
researchers behind detecting this advantage - which they refer to as the ‘Geometric Test for
Quantum Learning Advantage’.

The first step of this process is to create a “quantum embedding” of our dataset, which
is essentially a representation of our feature space (range of values a dataset can hold)
acceptable to our quantum machine, along with an evaluation of this data corresponding to
a quantum kernel method. This evaluation, and the use of quantum kernels in general, is
simply the application of any classical kernel method to change the base of a feature space,
but evaluated on the quantum embedding of the data as opposed to the baseline classical
representation of our data.

Now with this quantum embedding, some arbitrary kernel function, and dataset in
question, the test seeks to compare against a simple classical embedding over a range of
possible target values or output predictions. The test utilizes a geometric constant ‘g’
to define the distance between the feature-mapped results of the quantum and classical
embeddings of the data, and based on the value of this constant, determine if a quantum
solution is worthwhile for the given problem.

The first experiments of this test revealed that in general, quantum kernels, or kernels
applied to quantum acceptable mappings of input data, valued memorization over actual
generalization gained from data. Thus, these methods perform worse than expected on test
sets - a solution found for this involved after applying the quantum kernel to then translate
back into a classical data space (the new classical representation now referred to as the
projected quantum kernel) - illustrated by the following figure.

13
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Now one might be asking at this point: why even utilize a quantum kernel in the first
place if we’re simply going to translate back into a classical representation at the end either
way? The answer to this is in the fact that even when projecting back into the classical data
space researchers found that they were able to preserve some aspects of quantum geometry
not able to be simulated classically, hence the projected quantum kernel was by no means
the same as the original classical model as illustrated in the above feature mapping.

In conclusion, the utilization of the projected quantum kernel when applied to the right
problem domain is said to lead to, “improved ability to describe non-linear functions of
the existing embedding, a reduction in the resources needed to process the kernel from
quadratic to linear with the number of data points, and the ability to generalize better at
larger sizes,” (Quantum Machine Learning and the Power of Data, McClean, Huang).

This is exactly what we were looking for: in the case of some data sets and problems,
we are able to observe both pre-discussed portions of quantum advantage. The researchers
behind this test do carry on to state that this is generally not the case for most prob-
lems, the type of data available entirely shapes what solution is going to be effective, but
they have concluded that in some cases with proper resources available the introduction of
this projected quantum kernel does have positive performance implications and could be a
worthwhile tool when qubits become a less scarce resource.

5. Conclusion

Quantum machine learning is currently a heavily researched subject that for the reasons
outlined above, has extremely high upside potential. With both the ability to reduce com-
putational complexity requirements and increase accuracy of predictions - the future of
quantum machine learning has promise.

Unfortunately in modern times, it remains at just potential and has yet to see real heavy
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business application - which I imagine will be the case for quite some time. Given that it is
just not possible for nearly anyone to access quantum compute resources, I imagine that the
first examples of quantum machine learning that see use in industry will come as a result
of Google / IBM renting out their quantum machines in order to train models for others.
Given the potential of this technology, I would not be surprised if in 5 years from now we
will be answering questions with quantum machine learning that we never thought possible.
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